

Lasers for External FEL Seeding (Experience and critical aspects of external laser seeding at FERMI)

Miltcho Danailov Elettra-Sincrotrone Trieste

OUTLINE

- **Introduction**
- HGHG, EEHG, Direct seeding: brief comparison and ideal laser source parameters
- HGHG seeding
- > Present solution at FERMI: system evolution and critical aspects
- Single cascade
- Double cascade
- Seed Laser Layout
- Synchronization aspects
- Beam transport and Dispersion Compensation aspects
- EEHG
- > Layout used at FERMI
- Possible layout for implementation on FEL1
- Alternative laser sources for HGHG/EEHG
- > Yb-based systems (DESY and X-FEL approach)
- Stretched Hollow-fibre based seed
- Conclusions

INTRODUCTION

MAIN REQUESTS TO AN EXTERNALLY SEEDED EUV/SOFT X-RAY FEL

Wavelength range: 2-120 nm (~620-10 eV) Continuous 'push-button' tunability 1-20% around the wavelength of interest Energy Per pulse : 10-500 µJ

STABILITY

- Wavelength stability: ~10-4
- Pulse energy stability : <20% RMS acceptable, <10% RMS often requested and typically available, <5% RMS ideal

SPATIAL QUALITY : close to Gaussian TEM₀₀

HIGH FLEXIBILITY

- Pulse duration: few fs-1 ps
- Bandwidth: few meV-0.2 eV
- Bandwidth/pulse duration may be adjustable to user needs
- Possibility for double X-ray pulse generation with variable delay/wavelength
- Simultanous harmonics with fine-tunable phase relation
- Variable polarization

ENABLING HIGH ACCURACY PUMP-PROBE EXPERIMENTS

• Timing jitter with respect to a synchronized optical laser: <10 fs

Seeded FEL

Femtosecond OPA

MAIN EXTERNAL SEEDING SCHEMES

□ Direct (Injection) Seeding $\lambda_{FEL} = \lambda_{seed}$ Pseed≥100xPspont A TW-level pump laser is needed

- data from B. Carré, Colloque AEC - Slicing, Paris 2004
- Shot noise estimate includes transport and matching to e-beam – Seeded FELs Workshop, Frascati 10-12 (2008)

1-W. Boutu M. Ducousso, J.-F. Hergott and H. Merdji on HHG and 2-M.E. Couprie and L. G, on Seeded FELs, both in Springer Series in Optical Sciences 197 (2015) ISBN 978-3-662-47442-6DOI 10.1007/978-3-662-47443-3

□ High Gain Harmonic Generation (Yu, L. H., *Phys. Rev. A* 44 (1991)) FERMI (4-110 nm), DALIAN (50-180 nm)

Courtesy Luca Giannesy

- Seeding in the Deep UV range, PDUV~200-500 MW -> 50-100 GW IR Pump laser
- Seeding a cascade in the VUV-EUV, P ~400 kW ->TW level IR pump laser (Dunning et al, *Journal of Mod.Optics* **16** (2011))
- Echo Enabled Harmonic Generation (G.Stupakov , Phys. Rev. Lett. 102, 074801 (2009))
- Seed 1 UV, Seed 2 Deep UV, PDUV~200-500 MW -> 50-100 GW IR Pump laser
- □ Enhanced SASE , Slicing, ...

HGHG EXTERNAL SEEDING

SINGLE STAGE (e.g. FERMI FEL1)

-Wavelength range 15-120 nm , H=3-15, typical energy per pulse 25-500 uJ (up to 1.2mJ)

-FEL Pulse duration $T_{\text{seed}}*n^{-1/2} < T_{\text{FEL}} < (7/6) T_{\text{seed}}*n^{-1/3}$

IDEAL SEED

- λ=240-360 nm
- P≥150 MW in Modulator (i.e.
 ≥ 300 MW at the souce)
- Δλ/λ~10-4
- ∆P/P≤1-2x10⁻²
- 2-3 different nearly TL pulse duration and chirp options

FUSEE 2019 M.Danailov

HGHG EXTERNAL SEEDING

DOUBLE CASCADE FRESH-BUNCH (e.g. FERMI FEL2)

-Wavelength range 4-20 nm , H=12-65 (excluding prime numbers) , typical energy per

-FEL Pulse duration TSEED*(nxm)-1/2 < T $_{FEL}$ < (7/6) T $_{SEED}$ *(nxm)-1/3

'IDEAL' SEED

- λ=240-280 nm
- P≥300 MW in MOD1
- i.e. \geq 600 MW at the source
- Δλ/λ~10⁻⁴
- ∆P/P≤1-2x10⁻²
- Low spectral phase distortions: pulse
 as close as possible to TL

THE FERMI SEED LASER

THE FERMI SEED LASER

Boundary conditions :

- Distance from laser telescope to modulator centre: ~ 25 m
- Distance from last window to modulator center: ~ 11 m
- Input polarization horizontal
- No access to the used seed beam

-BT contains 14-15 mirrors, including 45P and 0 deg

- Beam pointing feedback a 'must'
- '-Virtual' undulator is not common path

THE FERMI SEED LASER

FEL1

Main seed option: IR OPA with up-conversion to UV (modified OPERA-SOLO) mode:

Main range R1: 232-267 nm, Second range R2:300-360 nm Peak power > 150 MW Pulse duration R1~110-120 fs and R2~ 90-100 fs (with precompression for the BT) Wavelength stability: <10-4 Pulse energy stability: <10-4 Pulse energy stability: <1.5% RMS Position stability: <20 µm RMS (piezo tip-tilt feedabck essential) Timing jitter UV pulse: <7 fs RMS with respect to the timing

THG based fixed wavelength mode:

Wavelength : 261-265 nm (tunability $\pm 1 \text{ nm}$), UV peak power $\geq 800 \text{ MW}$ (energy per pulse >80 µJ) Energy stability <0.8% RMS Pulse duration (FWHM): 100-350 fs range (negative or positive linear chirp of up to can be added) Typical bandwidth 0.75 nm Mostly used in machine studies, FEL2, Chirped Pulse Seeding or twin-seed mode

FEL1 SEEDING OPTIONS

Main Seed Wavelength ranges for FEL1

SeedR1: 232-267 nm, 130 fs, H=3-16

SeedR1m: 240-267 nm, 110 fs, H=3-16

SeedR2SP 300-360 nm, 60 fs H=3-16, (under development)

Beam transport issues:

- Minimum amount of material (vacuum windows, bear Solution: Transmission grating compressor
- ➢ BT transmission ≤50% : mirrors, grating comp
- Beam pointing stabilization : virtual undulator Solution:
- Holed screen inside FEL : installed, under tes
- Beam sampling grating
- Enlarge 1st Disp Section for inserting an out-May be allowed by the redesign for the EEHC

FEL2 SEEDING

Seed Options

OPA Seed: 240-267 nm, 100 fs, H1=3-13, H2=2-7 (Present OPA seed Range FEL2)

Scheme: fixed wavelength BB

Possible alternative approach: Tunable RG , e.g. with intracavity wavelength selection , e.g. ARCO (Amplitude) Main concern: reproducible WL tuning and WL stability

a.260-270 nm, 70 fs, H1=3-13, H2=2-7 (THG seed Range FEL2 under development)

For < 20 fs duration tunability over 100 nm with Mazzler

SYNCHRONIZATION ASPECTS

MUST HAVE

- Low phase noise Timing Ref distribution with drift compensation: stabilized fibre link based
- Seed Laser&Pump-probe laser:
- Low phase noise mode-locked oscillator(s) with optical locking (BOCC based) to the timing Ref
- Timing drift stabilization of Regen Amplifiers

GOOD TO HAVE

- Seed Beam transport drift stabilization
- Timing tool at experimental stations in case of sub-5 fs Pump-Probe resolution request

SYNCHRONIZATION ASPECTS

Mode Locked Oscillator Timing stabilization

Ti:Sapphire oscillator: a custom version of the Coherent Vitara and a homedeveloped BOCC

FUSEE 2019 M.Danailov

Ti:Sa osc#2

- Ti:Sa osc#1

SYNCHRONIZATION ASPECTS

Timing Stabilization Regenerative Amplifiers

Time drift of the Ti:Sa amplifier is fully compensated, the short term jitter is below 6fs RMS

SEED LASER TIMING LAYOUT

The single stage seeded FEL range can be extended to higher harmonics by EEHG (G.Stupakov, Phys. Rev. Lett. **102**, 074801)

- A first laser generates energy modulation in electron beam.
- A strong chicane creates stripes in the longitudinal phase space.
- A second laser imprints energy modulation.
- The second chicane converts energy modulation into harmonic density modulation.

EEHG IMPLEMENTATION AT FERMI 2018

First seed pulse: 120 fs range, 264 nm , with possibility for chirp variation Second Seed Pulse: 80-100 fs range, **nearly FT limited**, Timing: no carrier phase stability required, timing jitter <10 fs, Feedback on pointing stability and remote control on pulse parameters, including UV compressor for fine chirp adjustment

FUTURE EEHG IMPLEMENTATION AT FEL1

FUSEE 2019 M.Danailov

Sincrotrone Trieste

ALTERNATIVE SEED LASER TECHNOLOGIES

Motivation: High-Repetition rate Burst mode needs very high average power (a few kW) pump laser, not within reach by Ti:Sapphire technology

Solution: Yb-based technology (1030 nm) for pumping OPCPA/NOPA systems

Example: Systems developed at X-FEL and DESY for the pump-probe laser

(a similar approach is also under development at LCLS)

ALTERNATIVE SEED LASER TECHNOLOGIES

SHG pumped OPCPA + THG

	Average power in 1ms burst (compressed before beam transport) (W)	Compressed pulse energy @ 100 kHz before beam transport (mJ)	Compressed pulse energy @ 1 MHz before beam transport (mJ)	Tunability (nm)
Pump laser as reported in (Pergament et al., 2016).	4000	40.0	4.00	1030
OPCPA A (515nm pump, as reported in (Pergament et al., 2016)	300	3.0	0.30	690 - 900
OPCPA B (343nm pump, alternate concept, simulation)	90	0.9	0.09	465 - 600
Visible output OPCPA A (sum frequency simulation)	350	3.5	0.35	413 - 480
UV output – OPCPA A (cascaded sum frequency, simulation)	250	2.5	0.25	294 - 328
UV output – OPCPA A (THG, simulation)	20	0.2	0.02	230 - 300
UV output – OPCPA B (SHG, estimation)	10	0.1	0.01	232 - 300

Schemes under investigation for FLASH 2020+ seeding , expected power and efficiency Courtesy T.Lang, see poster for details

ALTERNATIVE SEED LASER TECHNOLOGIES

DUV/VUV generation and wavelength tuning without OPA : Soliton self-compression and dispersive wave emission in gas-filled hollow core fibre

J.Travers et all, Nature Photonics 13, 547-554 (2019)

Advantages:

- Ultrabroadband-tunability by only gas pressure change
- Simple setup
- Sufficiently high peak power also in the VUV
- Pulse duration down to few fs
- High spatial quality
- Energy scaling possible by increasing diameter/length of the fibre

Aspects to be studied:

- Pulse spectrum/structure long-term stability and reproducibility
- Narrow-band long-pulse option may not be feasible:

May be extremely suitable as a complementary seed source and pump-probe laser

CONCLUSIONS

FEL SEEDING ALLOWS VERY GOOD PERFORMANCE IN TERMS OF

STABILITY

SPECTRAL AND SPATIAL QUALITY

FLEXIBILITY

PUMP-PROBE EXPERIMENTS ACCURACY

THERE ARE REALISTIC ROOTS FOR FURTHER IMPROVEMENTS BASED ALSO ON FURTHER SEED LASER DEVELOPMENTS

ACKNOWLEDGEMENTS

Ivaylo Nikolov

Gabor Kurdi

Paolo Sigalotti

Paolo Cinquegrana

and to the FERMI Team

Alexander Demidovich

•BACKUP SLIDE1

LONG BEAM TRANSPORT TIMING DRIFTS

Cross-correlator measurement of the optical beam transport timing drift BOCC stands for balanced cross-correlator, ScCC- a scanning cross-correlator, SSCC1 and SSCC2 – single shot cross-correlators; BL- beamline chamber; DL1,DL2 and DL3 – delay lines.

