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q Introduction
q HGHG, EEHG, Direct seeding: brief comparison and ideal laser source 

parameters
q HGHG seeding 
Ø Present solution at FERMI: system evolution and critical aspects
• Single cascade
• Double cascade
• Seed Laser Layout
• Synchronization aspects
• Beam transport and Dispersion Compensation aspects
q EEHG
Ø Layout used at FERMI
Ø Possible layout for implementation on FEL1 
q Alternative laser sources for HGHG/EEHG 
Ø Yb-based systems (DESY and X-FEL approach)
Ø Stretched Hollow-fibre based seed
q Conclusions

OUTLINE
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INTRODUCTION

MAIN REQUESTS TO AN EXTERNALLY  SEEDED  EUV/SOFT X-RAY FEL 

Wavelength range: 2-120 nm (~620-10 eV) 
Continuous ‘push-button’ tunability 1-20% around the wavelength of interest 
Energy Per pulse : 10-500 µJ

STABILITY
- Wavelength stability: ~10-4   

- Pulse energy stability :  <20% RMS  acceptable, <10% RMS  often requested and 
typically available, <5% RMS  ideal

SPATIAL QUALITY : close to Gaussian TEM00 

HIGH FLEXIBILITY
• Pulse duration: few fs-1 ps
• Bandwidth: few meV-0.2 eV
• Bandwidth/pulse duration may be adjustable to user needs 
• Possibility for double X-ray pulse generation with variable delay/wavelength 
• Simultanous harmonics with fine-tunable phase relation
• Variable polarization
ENABLING HIGH ACCURACY PUMP-PROBE EXPERIMENTS
• Timing jitter with respect to a synchronized optical laser: <10 fs  
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MAIN EXTERNAL SEEDING SCHEMES

q Direct (Injection) Seeding

λFEL= λseed

Pseed≥100xPspont

A TW-level pump laser is needed

q High Gain Harmonic Generation  (Yu, L. H.,  Phys. Rev. A 44 (1991))
FERMI (4-110 nm), DALIAN (50-180 nm)
- Seeding in the Deep UV range, PDUV~200-500 MW -> 50-100 GW IR Pump laser
- Seeding a cascade in the VUV-EUV , P ~400 kW ->TW level IR pump laser
(Dunning et al, Journal of Mod.Optics 16 (2011))

q Echo Enabled Harmonic Generation (G.Stupakov , Phys. Rev. Lett. 102, 074801 

(2009))
- Seed 1 UV, Seed 2 Deep UV, PDUV~200-500 MW -> 50-100 GW IR Pump laser

q Enhanced SASE , Slicing, …

Courtesy Luca Giannesy
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HGHG EXTERNAL SEEDING  

SINGLE STAGE ( e.g. FERMI FEL1)

Modulator High gain radiators tuned at λ/NUV Seed
at λ

dispersion

EUV
pulse

-Wavelength range 15-120 nm , H=3-15, typical energy per pulse  25-500 uJ (up to 1.2mJ)  
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-FEL Pulse duration   ƬSEED*n-1/2 < Ƭ FEL < (7/6) ƬSEED*n-1/3

Tseed 100 fs

Tseed 50 fs

IDEAL SEED
• λ=240-360 nm
• P≥150 MW in Modulator (i.e.

≥ 300 MW at the souce)
• Δλ/λ~10-4

• ΔP/P≤1-2x10-2

• 2-3 different nearly TL pulse 
duration and chirp options 

λ/N

≥
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1st mod. 1st rads 2nd mod. 2nd radsDS1 DS2DL

HGHG EXTERNAL SEEDING  

DOUBLE CASCADE FRESH-BUNCH ( e.g. FERMI FEL2)

UV Seed
at λ

λ/n λ/(nxm)

EUV/Soft Xray

-Wavelength range 4-20 nm , H=12-65 (excluding prime numbers) , typical energy per 
pulse  10-100 uJ
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5.4 nm
h=48
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4.0 nmh=65

-FEL Pulse duration   ƬSEED*(nxm)-1/2 < Ƭ FEL < (7/6) ƬSEED*(nxm)-1/3

Tseed 100 fs

Tseed 50 fs

‘IDEAL’ SEED
• λ=240-280 nm
• P≥300 MW in MOD1
• i.e. ≥ 600 MW at the source
• Δλ/λ~10-4

• ΔP/P≤1-2x10-2

• Low spectral phase distortions: pulse 
as close as possible to TL



FUSEE 2019 M.Danailov

THE FERMI  SEED LASER
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Boundary conditions : 
- Distance from laser telescope to modulator centre: ~ 25 m
- Distance from last window to modulator center: ~ 11 m 
- Input polarization horizontal
- No access to the used seed beam

11 m

THE FERMI  SEED LASER

SEED LASER SYSTEM

-BT contains 14-15 mirrors, including 45P and 0 deg
- Beam pointing feedback a ‘must’
‘-Virtual’ undulator is not common path 



THE FERMI SEED LASER    
FEL1 
Main seed option: IR OPA with up-conversion to UV 
(modified OPERA-SOLO) mode: 
Main range R1: 232-267 nm, 
Second range R2:300-360 nm 
Peak power > 150 MW
Pulse duration R1~110-120 fs and R2~ 90-100 fs 
(with precompression for the BT)
Wavelength stability: <10-4

Pulse energy stability: <1.5% RMS
Position stability: <20 µm RMS (piezo tip-tilt feedabck essential)
Timing jitter UV pulse: <7 fs RMS with respect to the timing 
THG based fixed wavelength mode: 
Wavelength  : 261-265 nm ( tunability ± 1 nm), 
UV peak power ≥ 800 MW (energy per pulse >80 μJ)
Energy stability <0.8% RMS
Pulse duration (FWHM): 100-350 fs range 
(negative or positive linear chirp of up to can be added)
Typical bandwidth 0.75 nm
Mostly used in machine studies, FEL2 , Chirped Pulse 
Seeding or twin-seed mode
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FEL1 SEEDING OPTIONS
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SeedR1: 232-267 nm, 130 fs, 
H=3-16

SeedR2:300-360 nm, 90 fs; 
H=3-16

SeedR2SP 300-360 nm, 60 fs
H=3-16, (under development)

SeedR1m: 240-267 nm, 110 fs, 
H=3-16

Main Seed Wavelength ranges for FEL1

Beam transport issues:
Ø Minimum amount of material (vacuum windows, beam samplers, WP) : 12 mm 
Solution: Transmission grating compressor

Ø BT transmission ≤50% : mirrors, grating compressor, beam sampling for RT diagnostics
Ø Beam pointing stabilization : virtual undulator reference may suffer long term drifts 
Solution:
- Holed screen inside FEL : installed, under testing
- Beam sampling grating
- Enlarge  1st Disp Section for inserting an out-coupling mirror:

May be allowed by the redesign for the EEHG implementation  

• Need of dispersion compensation
• Need of TD compensation with WL 

tuning 
• B integral?  OK
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FEL2 SEEDING 
Seed Options
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OPA Seed: 240-267 nm, 100 fs, 
H1=3-13, H2=2-7  
(Present OPA seed Range FEL2 )

a.260-270 nm, 70 fs, 
H1=3-13, H2=2-7  
(THG seed Range FEL2 under development )

Tun Filter, 785-810 nm,

ΔλFWHM=20 nm, Θ1

Regen Amp

800 nm,ΔλFWHM=32 nm

Compress IR,

40-50 fs,τ1 

Atten

1-4 mJ, 

Θ2

SHG

Θ3

Delay

τ2 

WP 
λ/2,λ

fixed

THG

Θ4

Compress UV,70 fs,

τ3 , 260-270 nm

Scheme: fixed wavelength BB 

Possible alternative approach:
Tunable RG , e.g. with intracavity
wavelength selection , e.g. ARCO
(Amplitude)
Main concern: reproducible WL tuning
and WL stability 



SYNCHRONIZATION ASPECTS

EOS

TiS 
Amp

MUST HAVE
§ Low phase noise Timing Ref  distribution with drift compensation: stabilized fibre link based
§ Seed Laser&Pump-probe laser:
• Low phase noise mode-locked oscillator(s) with optical locking (BOCC based) to the 

timing Ref
• Timing drift stabilization of Regen Amplifiers

GOOD TO HAVE
§ Seed Beam transport drift stabilization
§ Timing tool at experimental stations  in case of sub-5 fs Pump-Probe resolution request



FUSEE 2019 M.Danailov

Ti:Sapphire  oscillator: a custom version of the Coherent Vitara and a home-
developed BOCC

SYNCHRONIZATION ASPECTS
Mode Locked Oscillator  Timing stabilization
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SYNCHRONIZATION ASPECTS

Time drift of the Ti:Sa amplifier 
is fully compensated,  the short term jitter 
is below 6fs RMS
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UVX
CORR
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SEED LASER TIMING LAYOUT
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FUTURE SEED LASER TIMING LAYOUT?
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The single stage seeded FEL range can be extended to higher harmonics by EEHG
(G.Stupakov , Phys. Rev. Lett. 102, 074801)

Second modulator

To theradiators

First modulator

ECHO ENABLED HARMONIC GENERATION

• A first laser generates energy modulation in electron beam.

• A strong chicane creates stripes in the longitudinal phase space.
• A second laser imprints energy modulation.
• The second chicane converts energy modulation into harmonic density modulation.
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EEHG IMPLEMENTATION AT FERMI 2018

First seed pulse: 120 fs range, 264 nm , with possibility for chirp variation 
Second Seed Pulse: 80-100 fs range, nearly FT limited, 
Timing: no carrier phase stability required, timing jitter <10 fs, 
Feedback on pointing stability and remote control on pulse parameters, 
including UV compressor for fine chirp adjustment

SEED 
LASER

Seed 2

To Experimental Hall
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FUTURE EEHG IMPLEMENTATION AT FEL1

Main motivation: extend FEL1 range to 10 nm and below
Ø Additional advantages:
• Less sensitive to microbunching, narrower bandwidth
• Single Seed2 OPA range can cover 10-110 nm 
• Easier twin-pulse implementation compared to double-cascade 
Ø Boundary conditions :
• Coexistence with standard FEL1 operation
• FEL2 operation unaffected
• SLU operation unaffected
• EEHG Seed 2 pulse beam highest  quality
• If possible single BT optics A new laser has to be added

λseed1=390 nm
λseed2=240-267 nm

n=-1

REGA2 OPA2 REGA1 OPA1 REGA3 OPA3

THG

FEL2 Seed 
240-267 nm

SH-SFS/FHS
EEHG Seed 1 : 390 nm

SHG

EEHG Seed 2 : 240-267 nm

SLU to Pump probe 800 nm

EOS FEL2 800 nm

FEL1 Seed 240-360 nm

SH-SFS
IB FEL2

n=-2

Layout under consideration:
- Last up-conversion process at the insertion breadboard in UH
- BT and dispersion management of pulses in the visible  (SFS, SHS,SHF)  
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Motivation: High-Repetition rate Burst mode needs very high average power (a few kW) pump laser, not 
within reach by Ti:Sapphire technology
Solution: Yb-based technology (1030 nm) for pumping OPCPA/NOPA systems
Example: Systems developed at X-FEL and DESY for the pump-probe laser
(a similar approach is also under development at LCLS) 

ALTERNATIVE SEED LASER TECHNOLOGIES

M2≤1.2

THG 
at fixed λ

Topas pumped 
By NOPAIII

M. Pergament et al, Opt.Express 24 29349-29359  (2016) 

FLASH Pump-probe laser (Courtesy T.Lang) 
see poster at this workshop  
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Short pulses Narrow bandwidth

Tunability by pump-seed 
delay control only 

Standard wavelength deviation: 3.2 nm

Long-term wavelength stability 
@ broadband operation (~200nm)
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ALTERNATIVE SEED LASER TECHNOLOGIES

Schemes under investigation for FLASH 2020+ seeding , expected power and efficiency  
Courtesy T.Lang, see poster for details

SHG pumped OPCPA 
+ cascaded SFG

SHG pumped OPCPA + 
THG

SHG pumped OPCPA + 
THG
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DUV/VUV generation  and wavelength tuning without OPA : Soliton self-compression and dispersive wave emission in gas-filled 
hollow core fibre
J.Travers et all, Nature Photonics 13, 547-554 (2019)

ALTERNATIVE SEED LASER TECHNOLOGIES

Advantages:
- Ultrabroadband-tunability by only gas pressure change
- Simple setup
- Sufficiently high peak power also in the VUV
- Pulse duration down to few fs
- High spatial quality
- Energy scaling possible by increasing diameter/length 

of the fibre
Aspects to be studied:
- Pulse spectrum/structure long-term stability and reproducibility 
- Narrow-band long-pulse option may not be feasible: 
May be extremely suitable as a complementary seed source and pump-probe laser
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FEL SEEDING ALLOWS VERY GOOD 
PERFORMANCE IN TERMS OF 

STABILITY

SPECTRAL AND SPATIAL QUALITY

FLEXIBILITY

PUMP-PROBE EXPERIMENTS ACCURACY  

THERE ARE REALISTIC ROOTS FOR FURTHER IMPROVEMENTS
BASED ALSO ON FURTHER SEED LASER DEVELOPMENTS  

CONCLUSIONS
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•BACKUP SLIDE1
LONG BEAM TRANSPORT TIMING DRIFTS

Cross-correlator measurement of  the 
optical beam transport timing drift 
BOCC stands for balanced cross-correlator,   
ScCC- a scanning cross-correlator, SSCC1 
and SSCC2 – single shot cross-correlators; 
BL- beamline chamber; DL1,DL2 and DL3 –
delay lines.


