

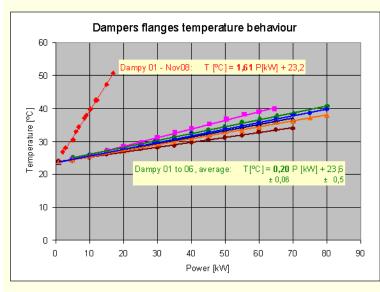
Brief Summary on ESLS-RF Workshop 2010

Main RF components for Storage Ring

- Accelerating structure 100 352 500 MHz
 normal conducting single/multi cell cavities
 superconducting cavities
- Power plant
 - klystron transmitter (high power station)
 - IOT based transmitter (medium power station)
 - solid state amplifier (modular design)
- RF control and diagnostic
 - digital low level RF
- RF tools
 - input power coupler, cavity combiners, …

NC accelerating structures

- Normal conducting single/multi cells cavities are well known structure.
- SLS has confirmed this choice

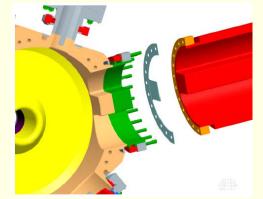

Courtesy F. Perez (ALBA)

ALBA accelerating structures

To avoid H.O.M. longitudinal instability: DUMPY CAVITY . NC single cell equipped with wave guides to extract HOM's field.
 Installed and full RF power tested.

RF power level vs temperature. Courtesy F. Perez

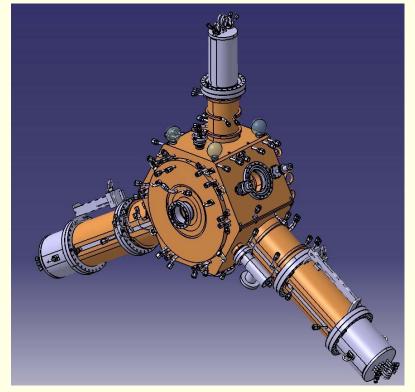
ALBA cavities. Courtesy F. Perez



BESSY II Accelerating structures

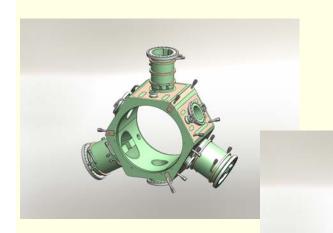
BESSY HOM damped cavity :

- **Long. Impdance < 11 K** Ω
- **Trans. impedance and 60 k\Omega/m**
- **R**shunt ~ 3.4 MΩ
- 100 kW expected operation
- Bessy II new cavity: ordering process


"no gap" modification for the ridged WG (ALBA, ESRF, HZB) Courtesy E. Weihreter HZB BESSY II new cavity. Courtesy E .Weihreter

ESRF of accelerating structures

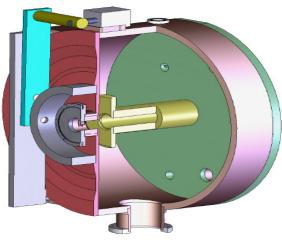
- ESRF RF upgrade: 6 cavities (5 cell each) replaced by 18 NC cavities single cell HOM dumped
- 9 MV with at least 12 cavity
- operate at 0.3 A
- power capability for 0.5 A
- HOM longitudinal impedance below threshold for 1 A.

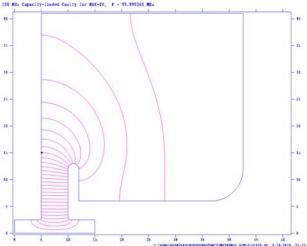

ESRF 352 MHZ Cavity. Courtesy J. Jacob

ESRF accelerating structure

- ESRF has performed cavity design and validation of prototype, mechanical and thermal design " in house".
- three prototypes under fabrication: on November first delivery
- create a market for fabrication of this device

Courtesy V. Serrière



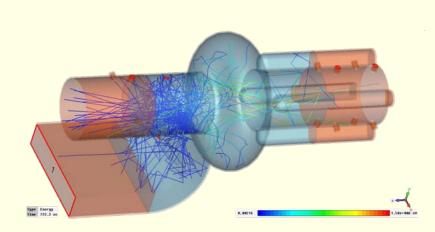


MAX IV accelerating structure

- For MAX IV rings the optimized design of the existing Max II and Max III 100 MHz cavities (higher voltage and improved heat exchange capability)
- 2 RF station (60 kW each) required for 1.5 GeV ring
- 6 RF station (120 kW each) required for 3.0 GeV ring
- Call for tender for cavity fabrication

avity M

Max II and Max III cavity Courtesy Å. Andersson


Max IV Inner cavity shape Courtesy Å. Andersson

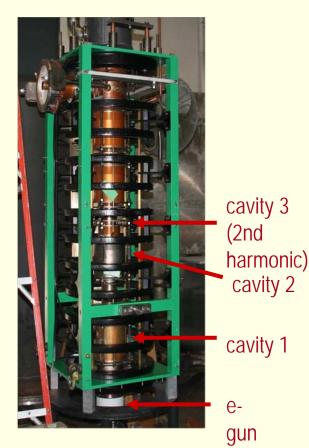
SC Accelerating structures

- superconducting cavity operational at Diamond and Soleil, 3rd harmonic (Elettra, SLS)
- experience good reliability, but when they fail... their recover takes relatively long time

DIAMOND multipacting studies Courtesy M. Jensen

SOLEIL cryo-module Courtesy M. Elajjouri

SC accelerating structures


need redundancy in the system (compressor, spare cryomodule), carefully maintenance procedure
 further optimizations required: mechanical design (plunger, pick up), and simulation (multipacting studies)

Klystron-based Power Plant

SLS klystron (EEV K3418P) Courtesy L. Stingelin

- Klystron-based transmitter: several "sizes" from 800 kW (Petra III) to 180 kW (SLS) to 60 kW (Elettra). Typical gain ≈ 40 dB
- the market: who's going to build them, cost, delivery time, know how.
- Storage (HZB) and refurbishing (SLS) problems

HZB-Bessy transmitter plant. Courtesy W. Anders

I.O.T. based power plant

- IOT typical "size" at 500Mhz is 80 kW cw, gain ≈ 23 dB. The required power level is reached combining two/four tubes together
- IOT plants at Diamond and Elettra (E2V D2130,TH 793 and TH 793-1 LS) at MLS (CPI CHK5900W1), Alba (TH 793-1 LS)

TED TH 793-1 LS installation at Diamond before December 2009 Courtesy M. Jensen

TED E2V D2130 installation at Diamond after December 2009 Courtesy M. Jensen

I.O.T. based power plant

Elettra has two sockets system: one E2V (June 2010) and one TED tube (TH 793 last installation aug-2009)

TED TH 793-1 installation at Elettra before June 2010

E2V D2130 installation at Elettra after June 2010

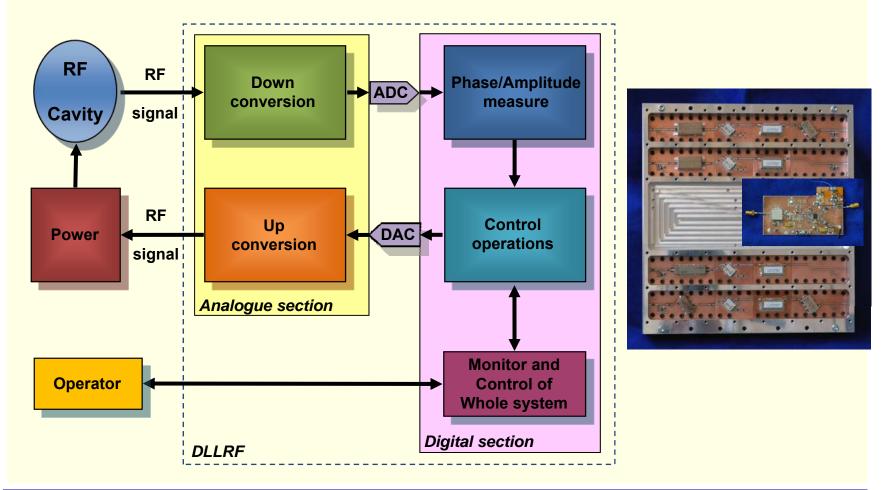
I.O.T. based power plant

IOT performances :

- MLS: 2.5 years of operation for CPI without complains
- Recently Diamond (Dec. 2009) and Elettra (Jun. 2010) have chosen E2V ones.
 - Diamond: no troubles for booster (TH 793), but lots of failures in the storage ring for TED ones. Good behavior of E2V tubes, few trips just at start up.
 - Elettra: lack of reliability for TH 793 (too many trips), severe failure for TH 793-1 LS. Now D2130 tube's total hours are 2860, total trips 9. 89% of the trips in the first 1200 hours. Too early to definitively assess its performance.
- Alba: some troubles during IOT commissioning phase
- Up to now, TED tube does not match the reliability demand for LS. The experience of next machines (ALBA and CERN PS) will tell us more.

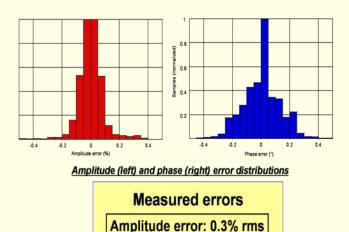
Solid State power plant

- SOLEIL 352 MHz Solid state amplifier: 20000 hours of operation ~ 100% operational availability. Brilliant!
- In house development & design
- R & D of new RF modules
 - **Frequencies from 88 to 500 MHz**
 - Output power from 1.0 to 0.7 kW
 - Gain > 18 dB
 - **Efficiency > 67%**
- 2 systems of 50 kW @ 476 MHz (LNLS) successfully tested
- Technology Transfer agreement with private company to build 14 towers of 75 kW for ESRF


SOLEIL: solid state power tower Courtesy M. Elajjouri

Digital LLRF

Elettra digital LLRF layout and down conversion board prototype



Digital LLRF

- LLRF Alba Booster is fully commissioned. Automatic start up procedure
- Prototype and first results for Soleil booster and storage ring.
- Prototype and first results for ASTRID

SOLEIL: Direct RF and Digital I/Q feedback loop performances. Result at 300 mA. Courtesy R. Sreedharan

Phase error: 0.2° rms

ASTRID: I/Q demodulator and 100 kHz low pass filter. Courtesy J.S.Nielsen

RF "strategies"

- collaboration to control cost and push benefit
 - Common spare parts for save operation & storage (HZB proposal for klystron)
 - Common call for tender for cavities and associated equipment (Max IV and Astrid2)
- in house development, design, and, when feasible, fabrication
 IPC and cavity development (CERN ESRF SOLEIL)
 IPC (SLS)
- keep high the interest of private companies in making RF devices
 - "know how" shall not be lost
 - avoiding "mono" supplier

http://www.elettra.trieste.it/Conferences/2010/ESLS_RF/

